Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Biomed Opt ; 29(Suppl 2): S22702, 2025 Dec.
Article in English | MEDLINE | ID: mdl-38434231

ABSTRACT

Significance: Advancements in label-free microscopy could provide real-time, non-invasive imaging with unique sources of contrast and automated standardized analysis to characterize heterogeneous and dynamic biological processes. These tools would overcome challenges with widely used methods that are destructive (e.g., histology, flow cytometry) or lack cellular resolution (e.g., plate-based assays, whole animal bioluminescence imaging). Aim: This perspective aims to (1) justify the need for label-free microscopy to track heterogeneous cellular functions over time and space within unperturbed systems and (2) recommend improvements regarding instrumentation, image analysis, and image interpretation to address these needs. Approach: Three key research areas (cancer research, autoimmune disease, and tissue and cell engineering) are considered to support the need for label-free microscopy to characterize heterogeneity and dynamics within biological systems. Based on the strengths (e.g., multiple sources of molecular contrast, non-invasive monitoring) and weaknesses (e.g., imaging depth, image interpretation) of several label-free microscopy modalities, improvements for future imaging systems are recommended. Conclusion: Improvements in instrumentation including strategies that increase resolution and imaging speed, standardization and centralization of image analysis tools, and robust data validation and interpretation will expand the applications of label-free microscopy to study heterogeneous and dynamic biological systems.


Subject(s)
Histological Techniques , Microscopy , Animals , Flow Cytometry , Image Processing, Computer-Assisted
2.
J Vis Exp ; (206)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38682901

ABSTRACT

Neural stem cells (NSCs) divide and produce newborn neurons in the adult brain through a process called adult neurogenesis. Adult NSCs are primarily quiescent, a reversible cell state where they have exited the cell cycle (G0) yet remain responsive to the environment. In the first step of adult neurogenesis, quiescent NSCs (qNSCs) receive a signal and activate, exiting quiescence and re-entering the cell cycle. Thus, understanding the regulators of NSC quiescence and quiescence exit is critical for future strategies targeting adult neurogenesis. However, our understanding of NSC quiescence is limited by technical constraints in identifying quiescent NSCs (qNSCs) and activated NSCs (aNSCs). This protocol describes a new approach to identify and enrich qNSCs and aNSCs generated in in vitro cultures by imaging NSC autofluorescence. First, this protocol describes how to use a confocal microscope to identify autofluorescent markers of qNSCs and aNSCs to classify NSC activation state using autofluorescence intensity. Second, this protocol describes how to use a fluorescent activated cell sorter (FACS) to classify NSC activation state and enrich samples for qNSCs or aNSCs using autofluorescence intensity. Third, this protocol describes how to use a multiphoton microscope to perform fluorescence lifetime imaging (FLIM) at single-cell resolution, classify NSC activation state, and track the dynamics of quiescent exit using both autofluorescence intensities and fluorescence lifetimes. Thus, this protocol provides a live-cell, label-free, single-cell resolution toolkit for studying NSC quiescence and quiescence exit.


Subject(s)
Neural Stem Cells , Neural Stem Cells/cytology , Animals , Mice , Microscopy, Confocal/methods , Flow Cytometry/methods , Optical Imaging/methods , Neurogenesis/physiology
3.
J Surg Res ; 294: 82-92, 2024 02.
Article in English | MEDLINE | ID: mdl-37864962

ABSTRACT

INTRODUCTION: There have been no significant changes in anal cancer treatment options in 4 decades. In this study, we highlight two preclinical models designed to assess anal cancer treatments. MATERIALS AND METHODS: Transgenic K14E6/E7 mice were treated with 7, 12-dimethylbenz(a)anthracene until anal tumors developed. Mice were treated with localized radiation in addition to chemotherapy (combined-modality therapy [CMT]) and compared to no treatment control (NTC). K14E6/E7 mouse anal spheroids with and without Pik3ca mutations were isolated and treated with vehicle, LY3023414 (LY3) (a drug previously shown to be effective in cancer prevention), CMT, or CMT + LY3. RESULTS: In the in vivo model, there was a significant increase in survival in the CMT group compared to the NTC group (P = 0.0392). In the ex vivo model, there was a significant decrease in the mean diameter of CMT and CMT + LY3-treated spheroids compared to vehicle (P ≤ 0.0001). For LY3 alone compared to vehicle, there was a statistically significant decrease in spheroid size in the K14E6/E7 group without mutation (P = 0.0004). CONCLUSIONS: We have provided proof of concept for two preclinical anal cancer treatment models that allow for the future testing of novel therapies for anal cancer.


Subject(s)
Anus Neoplasms , Carcinoma, Squamous Cell , Mice , Animals , Mice, Transgenic , Combined Modality Therapy , Anus Neoplasms/therapy , Anus Neoplasms/pathology , Anal Canal/pathology , Carcinoma, Squamous Cell/pathology
4.
Biomaterials ; 298: 122136, 2023 07.
Article in English | MEDLINE | ID: mdl-37178589

ABSTRACT

Regional metastasis of head and neck cancer (HNC) is prevalent (approximately 50% of patients at diagnosis), yet the underlying drivers and mechanisms of lymphatic spread remain unclear. The complex tumor microenvironment (TME) of HNC plays a crucial role in disease maintenance and progression; however, the contribution of the lymphatics remains underexplored. We created a primary patient cell derived microphysiological system that incorporates cancer-associated-fibroblasts from patients with HNC alongside a HNC tumor spheroid and a lymphatic microvessel to create an in vitro TME platform to investigate metastasis. Screening of soluble factor signaling identified novel secretion of macrophage migration inhibitory factor (MIF) by lymphatic endothelial cells conditioned in the TME. Importantly, we also observed patient-to-patient heterogeneity in cancer cell migration similar to the heterogeneity observed in clinical disease. Optical metabolic imaging at the single cell level identified a distinct metabolic profile of migratory versus non-migratory HNC cells in a microenvironment dependent manner. Additionally, we report a unique role of MIF in increasing HNC reliance on glycolysis over oxidative phosphorylation. This multicellular, microfluidic platform expands the tools available to explore HNC biology in vitro through multiple orthogonal outputs and establishes a system with enough resolution to visualize and quantify patient-to-patient heterogeneity.


Subject(s)
Head and Neck Neoplasms , Macrophage Migration-Inhibitory Factors , Humans , Macrophage Migration-Inhibitory Factors/metabolism , Monocytes/metabolism , Endothelial Cells/metabolism , Cell Movement , Cell Line, Tumor , Tumor Microenvironment
5.
Article in English | MEDLINE | ID: mdl-36642996

ABSTRACT

Currently approved adoptive T cell therapy relies on autologous (obtained from the same patient) T cells, which often suffer from poor quality that diminishes treatment efficacy. Due to the heterogeneous nature of T cell quality between and within patients, significant efforts are aimed at optimizing cell manipulation and growth conditions for potent T cell products. We believe that touch-free imaging and sensing technologies are critical to monitor single-cell features during T cell manufacturing to ensure consistent and optimally timed methods for cell manipulation and growth. Here, we discuss emerging label-free optical imaging and sensing methods, along with machine learning techniques that could enable in-line feedback to optimize T cell quality at multiple stages during manufacturing. These methods have the potential to streamline current workflow, accelerate the manufacture of safe high-quality T cell therapies, and improve our understanding of the dynamic, heterogeneous processes of T cell manufacturing.

6.
Bioact Mater ; 23: 261-273, 2023 May.
Article in English | MEDLINE | ID: mdl-36439083

ABSTRACT

The relationship between reactive oxygen and nitrogen species (ROS-RNS) secretion and the concomitant biocorrosion of degradable magnesium (Mg) materials is poorly understood. We found that Mg foils implanted short term in vivo (24 h) displayed large amounts of proinflammatory F4/80+/iNOS + macrophages at the interface. We sought to investigate the interplay between biodegrading Mg materials (98.6% Mg, AZ31 & AZ61) and macrophages (RAW 264.7) stimulated with lipopolysaccharide (RAW 264.7LPS) to induce ROS-RNS secretion. To test how these proinflammatory ROS-RNS secreting cells interact with Mg corrosion in vitro, Mg and AZ61 discs were suspended approximately 2 mm above a monolayer of RAW 264.7 cells, either with or without LPS. The surfaces of both materials showed acute (24 h) changes when incubated in the proinflammatory RAW 264.7LPS environment. Mg discs incubated with RAW 264.7LPS macrophages showed greater corrosion pitting, while AZ61 showed morphological and elemental bulk product changes via scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX). X-ray photoelectron spectroscopy (XPS) analysis showed a reduction in the Ca/P ratio of the surface products for AZ61 disc incubated with RAW 264.7LPS, but not the Mg discs. Moreover, RAW 264.7LPS macrophages were found to be more viable in the acute biodegradative environment generated by Mg materials, as demonstrated by calcein-AM and cleaved (active) caspase-3 staining (CC3). LPS stimulation caused an increase in ROS-RNS, and a decrease in antioxidant peroxidase activity. Mg and AZ61 were found to change this ROS-RNS balance, independently of physiological antioxidant mechanisms. The findings highlight the complexity of the cellular driven acute inflammatory responses to different biodegradable Mg, and how it can potentially affect performance of these materials.

7.
Prostate ; 82(16): 1547-1557, 2022 12.
Article in English | MEDLINE | ID: mdl-35980831

ABSTRACT

BACKGROUND: Androgen deprivation therapy (ADT) has been the standard of care for advanced hormone-sensitive prostate cancer (PC), yet tumors invariably develop resistance resulting in castrate-resistant PC. The acute response of cancer cells to ADT includes apoptosis and cell death, but a large fraction remains arrested but viable. In this study, we focused on intensively characterizing the early metabolic changes that result after ADT to define potential metabolic targets for treatment. METHODS: A combination of mass spectrometry, optical metabolic imaging which noninvasively measures drug responses in cells, oxygen consumption rate, and protein expression analysis was used to characterize and block metabolic pathways over several days in multiple PC cell lines with variable hormone response status including ADT sensitive lines LNCaP and VCaP, and resistant C4-2 and DU145. RESULTS: Mass spectrometry analysis of LNCaP pre- and postexposure to ADT revealed an abundance of glycolytic intermediates after ADT. In LNCaP and VCaP, a reduction in the optical redox ratio [NAD(P)H/FAD], extracellular acidification rate, and a downregulation of key regulatory enzymes for fatty acid and glutamine utilization was acutely observed after ADT. Screening several metabolic inhibitors revealed that blocking fatty acid oxidation and synthesis reversed this stress response in the optical redox ratio seen with ADT alone in LNCaP and VCaP. In contrast, both cell lines demonstrated increased sensitivity to the glycolytic inhibitor 2-Deoxy- d-glucose(2-DG) and maintained sensitivity to electron transport chain inhibitor Malonate after ADT exposure. ADT followed by 2-DG results in synergistic cell death, a result not seen with simultaneous administration. CONCLUSIONS: Hormone-sensitive PC cells displayed altered metabolic profiles early after ADT including an overall depression in energy metabolism, induction of a quiescent/senescent phenotype, and sensitivity to selected metabolic inhibitors. Glycolytic blocking agents (e.g., 2-DG) as a sequential treatment after ADT may be promising.


Subject(s)
Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/pathology , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Androgens/metabolism , Cell Line, Tumor , Fatty Acids
8.
J Biomed Opt ; 27(5)2022 05.
Article in English | MEDLINE | ID: mdl-35643815

ABSTRACT

SIGNIFICANCE: The optical redox ratio (ORR) [autofluorescence intensity of the reduced form of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H)/flavin adenine dinucleotide (FAD)] provides a label-free method to quantify cellular metabolism. However, it is unclear whether changes in the ORR with B-cell lymphoma 2 (Bcl-2) family protein inhibition are due to metabolic stress alone or compromised cell viability. AIM: Determine whether ABT-263 (navitoclax, Bcl-2 family inhibitor) changes the ORR due to changes in mitochondrial function that are independent of changes in cell viability. APPROACH: SW48 colon cancer cells were used to investigate changes in ORR, mitochondrial membrane potential, oxygen consumption rates, and cell state (cell growth, viability, proliferation, apoptosis, autophagy, and senescence) with ABT-263, TAK-228 [sapanisertib, mammalian target of rapamycin complex 1/2 (mTORC 1/2) inhibitor], and their combination at 24 h. RESULTS: Changes in the ORR with Bcl-2 inhibition are driven by increases in both NAD(P)H and FAD autofluorescence, corresponding with increased basal metabolic rate and increased mitochondrial polarization. ABT-263 treatment does not change cell viability or induce autophagy but does induce a senescent phenotype. The metabolic changes seen with ABT-263 treatment are mitigated by combination with mTORC1/2 inhibition. CONCLUSIONS: The ORR is sensitive to increases in mitochondrial polarization, energetic state, and cell senescence, which can change independently from cell viability.


Subject(s)
Flavin-Adenine Dinucleotide , NAD , Flavin-Adenine Dinucleotide/metabolism , Mitochondria/metabolism , NAD/metabolism , Oxidation-Reduction , Proto-Oncogene Proteins c-bcl-2/metabolism
9.
Sci Rep ; 12(1): 5205, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35338174

ABSTRACT

Representative models are needed to screen new therapies for patients with cancer. Cancer organoids are a leap forward as a culture model that faithfully represents the disease. Mouse-derived cancer organoids (MDCOs) are becoming increasingly popular, however there has yet to be a standardized method to assess therapeutic response and identify subpopulation heterogeneity. There are multiple factors unique to organoid culture that could affect how therapeutic response and MDCO heterogeneity are assessed. Here we describe an analysis of nearly 3500 individual MDCOs where individual organoid morphologic tracking was performed. Change in MDCO diameter was assessed in the presence of control media or targeted therapies. Individual organoid tracking was identified to be more sensitive to treatment response than well-level assessment. The impact of different generations of mice of the same genotype, different regions of the colon, and organoid specific characteristics including baseline size, passage number, plating density, and location within the matrix were examined. Only the starting size of the MDCO altered the subsequent growth. These results were corroborated using ~ 1700 patient-derived cancer organoids (PDCOs) isolated from 19 patients. Here we establish organoid culture parameters for individual organoid morphologic tracking to determine therapeutic response and growth/response heterogeneity for translational studies.


Subject(s)
Neoplasms , Organoids , Animals , Colon , Humans , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Organoids/pathology
10.
J Biomed Opt ; 26(7)2021 07.
Article in English | MEDLINE | ID: mdl-34247457

ABSTRACT

SIGNIFICANCE: Fluorescence lifetime imaging microscopy (FLIM) measures the decay rate of fluorophores, thus providing insights into molecular interactions. FLIM is a powerful molecular imaging technique that is widely used in biology and medicine. AIM: This perspective highlights some of the major advances in FLIM instrumentation, analysis, and biological and clinical applications that we have found impactful over the last year. APPROACH: Innovations in FLIM instrumentation resulted in faster acquisition speeds, rapid imaging over large fields of view, and integration with complementary modalities such as single-molecule microscopy or light-sheet microscopy. There were significant developments in FLIM analysis with machine learning approaches to enhance processing speeds, fit-free techniques to analyze images without a priori knowledge, and open-source analysis resources. The advantages and limitations of these recent instrumentation and analysis techniques are summarized. Finally, applications of FLIM in the last year include label-free imaging in biology, ophthalmology, and intraoperative imaging, FLIM of new fluorescent probes, and lifetime-based Förster resonance energy transfer measurements. CONCLUSIONS: A large number of high-quality publications over the last year signifies the growing interest in FLIM and ensures continued technological improvements and expanding applications in biomedical research.


Subject(s)
Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Biology , Microscopy, Fluorescence
11.
Methods Cell Biol ; 165: 39-57, 2021.
Article in English | MEDLINE | ID: mdl-34311870

ABSTRACT

Autophagy is an important intracellular pathway for the degradation of superfluous or harmful subcellular materials, thereby playing a critical role in the maintenance of cell health under normal and stress-related conditions. Researchers interrogating autophagic activity in mammalian cell lines often leverage complementary assay technologies to confirm observations. The Autophagy LC3 HiBiT Reporter assay system utilizes a tandem reporter module, HiBiT-HaloTag, fused to a key marker of autophagic activity, LC3B protein, to enable multiple, cell-based assay modalities. This novel autophagy reporter expressed in a single cell line supports (a) a bioluminescent, homogeneous, plate-reader assay for rapid and quantitative assessment of changes in the level of the LC3-based reporter, (b) a fluorescence-based imaging approach to monitor reporter subcellular distribution in live cells, and (c) an antibody-free, protein blotting method to detect the relative amounts of the LC3-I and LC-II forms of the reporter associated with modulation of autophagic flux. Here we detail protocols for all three assay modalities applied to a U2OS human osteosarcoma cell line stably expressing the novel autophagy reporter, enabling the identification of modulators of autophagic activity and subsequent confirmation of mechanism of action.


Subject(s)
Autophagy , Autophagy/genetics , Biological Assay , Blotting, Western , Cell Line , Humans
12.
Cancers (Basel) ; 13(8)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919802

ABSTRACT

Gastroenteropancreatic neuroendocrine tumors (GEP-NET) account for roughly 60% of all neuroendocrine tumors. Low/intermediate grade human GEP-NETs have relatively low proliferation rates that animal models and cell lines fail to recapitulate. Short-term patient-derived cancer organoids (PDCOs) are a 3D model system that holds great promise for recapitulating well-differentiated human GEP-NETs. However, traditional measurements of drug response (i.e., growth, proliferation) are not effective in GEP-NET PDCOs due to the small volume of tissue and low proliferation rates that are characteristic of the disease. Here, we test a label-free, non-destructive optical metabolic imaging (OMI) method to measure drug response in live GEP-NET PDCOs. OMI captures the fluorescence lifetime and intensity of endogenous metabolic cofactors NAD(P)H and FAD. OMI has previously provided accurate predictions of drug response on a single cell level in other cancer types, but this is the first study to apply OMI to GEP-NETs. OMI tested the response to novel drug combination on GEP-NET PDCOs, specifically ABT263 (navitoclax), a Bcl-2 family inhibitor, and everolimus, a standard GEP-NET treatment that inhibits mTOR. Treatment response to ABT263, everolimus, and the combination were tested in GEP-NET PDCO lines derived from seven patients, using two-photon OMI. OMI measured a response to the combination treatment in 5 PDCO lines, at 72 h post-treatment. In one of the non-responsive PDCO lines, heterogeneous response was identified with two distinct subpopulations of cell metabolism. Overall, this work shows that OMI provides single-cell metabolic measurements of drug response in PDCOs to guide drug development for GEP-NET patients.

13.
Integr Biol (Camb) ; 12(10): 250-262, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33034643

ABSTRACT

The prostate tumor microenvironment (TME) is strongly immunosuppressive; it is largely driven by alteration in cell phenotypes (i.e. tumor-associated macrophages and exhausted cytotoxic T cells) that result in pro-tumorigenic conditions and tumor growth. A greater understanding into how these altered immune cell phenotypes are developed and could potentially be reversed would provide important insights into improved treatment efficacy for prostate cancer. Here, we report a microfluidic model of the prostate TME that mimics prostate ducts across various stages of prostate cancer progression, with associated stroma and immune cells. Using this platform, we exposed immune cells to a benign prostate TME or a metastatic prostate TME and investigated their metabolism, gene and cytokine expression. Immune cells exposed to the metastatic TME showed metabolic differences with a higher redox ratio indicating a switch to a more glycolytic metabolic profile. These cells also increased expression of pro-tumor response cytokines that have been shown to increase cell migration and angiogenesis such as Interleukin-1 (IL-1) a and Granulocyte-macrophage colony-stimulating factor (GM-CSF). Lastly, we observed decreased TLR, STAT signaling and TRAIL expression, suggesting that phenotypes derived from exposure to the metastatic TME could have an impaired anti-tumor response. This platform could provide a valuable tool for studying immune cell phenotypes in in vitro tumor microenvironments.


Subject(s)
Immune System , Prostatic Neoplasms/immunology , Prostatic Neoplasms/physiopathology , Tumor Microenvironment , Cell Movement , Cell Proliferation , Cells, Cultured , Cytokines/metabolism , Fibroblasts/metabolism , Glycolysis , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Immunosuppression Therapy , In Vitro Techniques , Leukocytes, Mononuclear/metabolism , Male , Microfluidics , Models, Biological , Neoplasm Invasiveness , Neoplasm Metastasis , Neovascularization, Pathologic , Organ Culture Techniques , Oxidation-Reduction , Phenotype , Prostate/metabolism , STAT Transcription Factors/metabolism , Signal Transduction
14.
J Biomed Opt ; 25(7): 1-43, 2020 05.
Article in English | MEDLINE | ID: mdl-32406215

ABSTRACT

SIGNIFICANCE: Fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to distinguish the unique molecular environment of fluorophores. FLIM measures the time a fluorophore remains in an excited state before emitting a photon, and detects molecular variations of fluorophores that are not apparent with spectral techniques alone. FLIM is sensitive to multiple biomedical processes including disease progression and drug efficacy. AIM: We provide an overview of FLIM principles, instrumentation, and analysis while highlighting the latest developments and biological applications. APPROACH: This review covers FLIM principles and theory, including advantages over intensity-based fluorescence measurements. Fundamentals of FLIM instrumentation in time- and frequency-domains are summarized, along with recent developments. Image segmentation and analysis strategies that quantify spatial and molecular features of cellular heterogeneity are reviewed. Finally, representative applications are provided including high-resolution FLIM of cell- and organelle-level molecular changes, use of exogenous and endogenous fluorophores, and imaging protein-protein interactions with Förster resonance energy transfer (FRET). Advantages and limitations of FLIM are also discussed. CONCLUSIONS: FLIM is advantageous for probing molecular environments of fluorophores to inform on fluorophore behavior that cannot be elucidated with intensity measurements alone. Development of FLIM technologies, analysis, and applications will further advance biological research and clinical assessments.


Subject(s)
Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Energy Transfer , Microscopy, Fluorescence
15.
Clin Cancer Res ; 25(17): 5376-5387, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31175091

ABSTRACT

PURPOSE: Cancer treatment is limited by inaccurate predictors of patient-specific therapeutic response. Therefore, some patients are exposed to unnecessary side effects and delays in starting effective therapy. A clinical tool that predicts treatment sensitivity for individual patients is needed. EXPERIMENTAL DESIGN: Patient-derived cancer organoids were derived across multiple histologies. The histologic characteristics, mutation profile, clonal structure, and response to chemotherapy and radiation were assessed using bright-field and optical metabolic imaging on spheroid and single-cell levels, respectively. RESULTS: We demonstrate that patient-derived cancer organoids represent the cancers from which they were derived, including key histologic and molecular features. These cultures were generated from numerous cancers, various biopsy sample types, and in different clinical settings. Next-generation sequencing reveals the presence of subclonal populations within the organoid cultures. These cultures allow for the detection of clonal heterogeneity with a greater sensitivity than bulk tumor sequencing. Optical metabolic imaging of these organoids provides cell-level quantification of treatment response and tumor heterogeneity allowing for resolution of therapeutic differences between patient samples. Using this technology, we prospectively predict treatment response for a patient with metastatic colorectal cancer. CONCLUSIONS: These studies add to the literature demonstrating feasibility to grow clinical patient-derived organotypic cultures for treatment effectiveness testing. Together, these culture methods and response assessment techniques hold great promise to predict treatment sensitivity for patients with cancer undergoing chemotherapy and/or radiation.


Subject(s)
Drug Screening Assays, Antitumor/methods , Neoplasms/drug therapy , Neoplasms/radiotherapy , Organoids/drug effects , Organoids/radiation effects , Humans , Microscopy, Fluorescence, Multiphoton/instrumentation , Neoplasms/metabolism , Neoplasms/pathology , Organoids/metabolism , Organoids/pathology , Precision Medicine/methods , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spheroids, Cellular/radiation effects
16.
EBioMedicine ; 37: 144-157, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30482722

ABSTRACT

BACKGROUND: Ductal carcinoma in situ (DCIS) is the earliest stage of breast cancer. During DCIS, tumor cells remain inside the mammary duct, growing under a microenvironment characterized by hypoxia, nutrient starvation, and waste product accumulation; this harsh microenvironment promotes genomic instability and eventually cell invasion. However, there is a lack of biomarkers to predict what patients will transition to a more invasive tumor or how DCIS cells manage to survive in this harsh microenvironment. METHODS: In this work, we have developed a microfluidic model that recapitulates the DCIS microenvironment. In the microdevice, a DCIS model cell line was grown inside a luminal mammary duct model, embedded in a 3D hydrogel with mammary fibroblasts. Cell behavior was monitored by confocal microscopy and optical metabolic imaging. Additionally, metabolite profile was studied by NMR whereas gene expression was analyzed by RT-qPCR. FINDINGS: DCIS cell metabolism led to hypoxia and nutrient starvation; revealing an altered metabolism focused on glycolysis and other hypoxia-associated pathways. In response to this starvation and hypoxia, DCIS cells modified the expression of multiple genes, and a gradient of different metabolic phenotypes was observed across the mammary duct model. These genetic changes observed in the model were in good agreement with patient genomic profiles; identifying multiple compounds targeting the affected pathways. In this context, the hypoxia-activated prodrug tirapazamine selectively destroyed hypoxic DCIS cells. INTERPRETATION: The results showed the capacity of the microfluidic model to mimic the DCIS structure, identifying multiple cellular adaptations to endure the hypoxia and nutrient starvation generated within the mammary duct. These findings may suggest new potential therapeutic directions to treat DCIS. In summary, given the lack of in vitro models to study DCIS, this microfluidic device holds great potential to find new DCIS predictors and therapies and translate them to the clinic.


Subject(s)
Breast Neoplasms , Gene Expression Regulation, Neoplastic , Genomic Instability , Models, Biological , Tumor Microenvironment , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Hydrogels/chemistry , Microfluidic Analytical Techniques , Neoplasm Invasiveness
17.
Sci Rep ; 8(1): 5456, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29615678

ABSTRACT

While NAD(P)H fluorescence lifetime imaging (FLIM) can detect changes in flux through the TCA cycle and electron transport chain (ETC), it remains unclear whether NAD(P)H FLIM is sensitive to other potential fates of glucose. Glucose carbon can be diverted from mitochondria by the pentose phosphate pathway (via glucose 6-phosphate dehydrogenase, G6PDH), lactate production (via lactate dehydrogenase, LDH), and rejection of carbon from the TCA cycle (via pyruvate dehydrogenase kinase, PDK), all of which can be upregulated in cancer cells. Here, we demonstrate that multiphoton NAD(P)H FLIM can be used to quantify the relative concentrations of recombinant LDH and malate dehydrogenase (MDH) in solution. In multiple epithelial cell lines, NAD(P)H FLIM was also sensitive to inhibition of LDH and PDK, as well as the directionality of LDH in cells forced to use pyruvate versus lactate as fuel sources. Among the parameters measurable by FLIM, only the lifetime of protein-bound NAD(P)H (τ2) was sensitive to these changes, in contrast to the optical redox ratio, mean NAD(P)H lifetime, free NAD(P)H lifetime, or the relative amount of free and protein-bound NAD(P)H. NAD(P)H τ2 offers the ability to non-invasively quantify diversions of carbon away from the TCA cycle/ETC, which may support mechanisms of drug resistance.


Subject(s)
Carbon/metabolism , Glucose/chemistry , Glucose/metabolism , L-Lactate Dehydrogenase/metabolism , Malate Dehydrogenase/metabolism , NADP/metabolism , NAD/metabolism , Humans , MCF-7 Cells , Oxidation-Reduction
18.
Sci Rep ; 8(1): 1073, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348410

ABSTRACT

Plumbagin, an anti-cancer agent, is toxic to cells of multiple species. We investigated if plumbagin targets conserved biochemical processes. Plumbagin induced DNA damage and apoptosis in cells of diverse mutational background with comparable potency. A 3-5 fold increase in intracellular oxygen radicals occurred in response to plumbagin. Neutralization of the reactive oxygen species by N-acetylcysteine blocked apoptosis, indicating a central role for oxidative stress in plumbagin-mediated cell death. Plumbagin docks in the ubiquinone binding sites (Q0 and Qi) of mitochondrial complexes I-III, the major sites for oxygen radicals. Plumbagin decreased oxygen consumption rate, ATP production and optical redox ratio (NAD(P)H/FAD) indicating interference with electron transport downstream of mitochondrial Complex II. Oxidative stress induced by plumbagin triggered an anti-oxidative response via activation of Nrf2. Plumbagin and the Nrf2 inhibitor, brusatol, synergized to inhibit cell proliferation. These data indicate that while inhibition of electron transport is the conserved mechanism responsible for plumbagin's chemotoxicity, activation of Nrf2 is the resulting anti-oxidative response that allows plumbagin to serve as a chemopreventive agent. This study provides the basis for designing potent and selective plumbagin analogs that can be coupled with suitable Nrf2 inhibitors for chemotherapy or administered as single agents to induce Nrf2-mediated chemoprevention.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Electron Transport/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , Naphthoquinones/pharmacology , Oxidative Stress/drug effects , Antineoplastic Agents, Phytogenic/chemistry , Antioxidants/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Drug Synergism , Humans , Models, Molecular , Molecular Conformation , NF-E2-Related Factor 2/antagonists & inhibitors , Naphthoquinones/chemistry , Oxidation-Reduction/drug effects , Oxygen Consumption/drug effects , Structure-Activity Relationship
19.
ACS Biomater Sci Eng ; 2(12): 2355-2364, 2016 Dec 12.
Article in English | MEDLINE | ID: mdl-33465884

ABSTRACT

There has been considerable recent interest to develop a feasible bioresorbable stent (BRS) metal. Although zinc and its alloys have many potential advantages, the inflammatory response has not been carefully examined. Using a modified wire implantation model, we characterize the inflammatory response elicited by zinc at high purity (4N) [99.99%], special high grade (SHG)[∼99.7%], and alloyed with 1 wt % (Zn-1Al), 3% (Zn-3Al), and 5.5% (Zn-5Al) aluminum. We found that inflammatory cells were able to penetrate the thick and porous corrosion layer that quickly formed around SHG, Zn-1Al, Zn-3Al, and Zn-5Al implants. In contrast, a delayed entrance of inflammatory cells into the corrosion layer around 4N zinc due to a significantly lower corrosion rate was associated with greater fibrous encapsulation, appearance of necrotic regions, and increased macrophage labeling. Interestingly, cell viability at the interface decreased from SHG, to Zn-1Al, and then Zn-3Al, a trend associated with an increased CD68 and CD11b labeling and capsule thickness. Potentially, the shift to intergranular corrosion due to the aluminum addition increased the activity of macrophages. We conclude that the ability of macrophages to penetrate and remain viable within the corrosion layer may be of fundamental importance for eliciting biocompatible inflammatory responses around corrodible metals.

20.
Am J Physiol Heart Circ Physiol ; 308(10): H1229-36, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25770241

ABSTRACT

Secondary lymphedema in humans is a common consequence of lymph node dissection (LND) to treat breast cancer. A peculiar characteristic of the disease is that lifelong swelling often precipitously appears several years after the surgical treatment, often due to an inflammatory stimulus. Although the incidence of secondary lymphedema dramatically increases after radiation therapy, the relationship between fibrotic scarring and the eventual appearance of lymphedema remains unclear. To clarify the role of fibrosis in secondary lymphedema initiation, we chemically increased fibrosis in rodent tissues with bleomycin and assessed the ability of the local lymphatic system to prevent lymphedema, either acutely or in a chronic state induced by inflammation. We found that bleomycin injections exacerbated fibrotic matrix deposition in an acute mouse tail lymphedema model (P < 0.005), reduced wound closure (P < 0.005), and impaired the ability of tail lymphatics to regenerate (P < 0.005) and reduce the swelling (P < 0.05). When fibrosis was worsened with bleomycin after axillary LND in the rat foreleg, the ability of the foreleg lymphatic system to reduce the chronic state swelling induced by stimulated inflammation was severely impaired (P < 0.005). Indocyanine green lymphography in axillary LND-recovered rat forelegs revealed a worsened lymphatic drainage due to inflammation and bleomycin pretreatment. Although inflammation reduced the drainage of dextran fluid tracer from control forelegs (P < 0.05), the reduction in fluid drainage was more severe after axillary LND when fibrosis was first increased (P < 0.005). These findings demonstrate that fibrosis reduces the lymphatic capacity to functionally regenerate and prevent the chronic appearance of lymphedema.


Subject(s)
Lymphatic System/physiopathology , Lymphedema/physiopathology , Animals , Bleomycin/toxicity , Female , Fibrosis/etiology , Fibrosis/pathology , Fibrosis/physiopathology , Inflammation/pathology , Inflammation/physiopathology , Lymph Node Excision/adverse effects , Lymphatic System/drug effects , Lymphatic System/pathology , Lymphedema/pathology , Mice , Mice, Inbred BALB C , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...